ANGACOM-2403.05-rotation

Mittwoch, 17. April 2024

Smart Grid:
KI-basierte Netzüberwachung


[15.6.2020] Mittels künstlicher Intelligenz (KI) können Stromnetze effizient und automatisiert überwacht werden. Um Störungen schnellstmöglich zu erkennen und zu beheben, ist ein komplexes Zusammenspiel von Messdatengewinnung und KI-basierter Analyse notwendig.

Die KI-Funktion Anomalieerkennung benötigt keine zusätzlichen Trainingsdaten und führt eine automatische Bewertung einzelner Messsignale durch. Infolge des stetigen Zubaus dezentraler, volatiler Einspeiser, wie etwa Photovoltaik- und Windkraftanlagen, und des vermehrten Einsatzes aktiver Netzkomponenten, wie FACTS oder HGÜ-Systeme, ergeben sich neue Anforderungen an die Netzbetriebsführung. Wechselnde sowie kurzzeitig auftretende, große Leistungsflüsse erhöhen die Netzbelastung vor allem im dynamischen Zeitbereich und verstärken infolgedessen erheblich die Anfälligkeit der Netze gegenüber Instabilitäten oder Versorgungsausfällen. Einen vielversprechenden Lösungsansatz, um diesen wachsenden Herausforderungen zu begegnen, stellt die auf aktuellen Messungen basierende Echtzeitbewertung des Netzzustands dar. Diese ermöglicht eine automatische Online-Erkennung kritischer Betriebssituationen. So kann auf plötzlich eintretende Betriebsstörungen künftig voll- und teilautomatisiert reagiert werden, um einen stabilen Netzbetrieb aufrechtzuerhalten.

KI-basierte Assistenzfunktionen

Phasormessgeräte (engl.: phasor measurement unit, PMU) ermöglichen die präzise Erfassung kritischer Netzphänomene. Dabei werden auf Basis einer hochfrequenten Abtastung mit bis zu 50 Messungen pro Sekunde komplexe Strom- und Spannungszeiger ermittelt. Die gleichzeitige Auswertung mehrerer, im Netz verteilter PMUs ermöglicht die Weitbereichsüberwachung (engl.: wide area monitoring, WAMS) in Übertragungs- oder Verteilnetzen. Dabei können unterschiedliche Aufgaben sowohl im operativen Betrieb als auch bei der Planung von Netzen oder für Post-Mortem-Analysen durchgeführt werden.
Die Verwendung zeitlich hochauflösender Messsensorik kann insbesondere bei größeren Netzstrukturen sehr hohe Datenvolumina verursachen. Durch den Einsatz künstlicher Intelligenz (KI) lassen sich diese Datenmengen effizient verarbeiten und automatisiert auswerten. Das Fraunhofer IOSB-AST hat dafür verschiedene, KI-basierte Assistenzfunktionen entwickelt. Diese unterstützen sowohl den Echtzeitbetrieb des Netzes (Online-KI) als auch die Auswertung historischer Messaufzeichnungen (Offline-KI). Hierzu werden die Messsignale im Netz kontinuierlich erfasst und vorverarbeitet, um mögliche Messfehler zu eliminieren und Rauschanteile zu reduzieren. Die bereinigten Messwerte werden anschließend den einzelnen KI-basierten Assistenzfunktionen zur Online- und Offline-Analyse zur Verfügung gestellt (siehe Abbildung).

Echtzeitauswertung der Messungen

Innerhalb der Online-KI erfolgt die Echtzeitauswertung der Messungen zur unmittelbaren Unterstützung der Netzbetriebsführung. Die KI-Funktion Fehlerklassifikation dient zur automatisierten Ortung und Identifikation bestimmter Betriebsstörungen im Netz, wie zum Beispiel Leitungsausfälle, Ausfälle von Photovoltaik- und Windkraftanlagen oder auch Kurzschlüsse. Ein künstliches neuronales Netz bestimmt hierzu die Eintrittswahrscheinlichkeit für jeden Fehlertyp und Fehlerort auf Basis der aktuellen Messungen. Über einen Netzsimulator werden hierzu bestimmte Fehlerfälle vorsimuliert und dem künstlichen neuronalen Netz für das Training zur Verfügung gestellt.
Die KI-Funktion Anomalieerkennung benötigt keine zusätzlichen Trainingsdaten und führt eine automatische Bewertung einzelner Messsignale durch. Hierzu werden umfangreiche Signalanalysen im Zeit- und Frequenzbereich zur Abschätzung der Signalabweichung vom Normalverhalten durchgeführt. Diese wird anschließend den vier Hauptkategorien normal, niedrig, mittel und extrem zugeordnet.

Unüberwachte Ausreißerdetektion

Innerhalb der Offline-KI werden demgegenüber Langzeituntersuchungen auf Basis historischer Messaufzeichnungen durchgeführt. Um größere Datenbestände effizient auszuwerten, wurde am Fraunhofer IOSB-AST ähnlich zu Verfahren der Audio- oder Bildkompression ein zweistufiges Kompressionsverfahren entwickelt, mit dem die Online- und Offline-Assistenzfunktionen auf Basis künstlicher Intelligenz zur Unterstützung der Netzbetriebsführung. Datensätze um bis zu 80 Prozent unter Beibehaltung des Informationsgehalts verringert werden konnten. Diese komprimierten Datensätze werden archiviert und erlauben gleichzeitig eine Rücktransformation der Original-Messdaten. Die KI-Funktion Fehlerextraktion wertet die komprimierten Messdatensätze aus und sucht automatisiert nach möglichen Anomalien oder Fehlermustern ohne Verwendung von a-priori-Wissen. Hierzu wird eine unüberwachte Ausreißerdetektion über ein Ensemble-Modell mit nachgelagertem Clustering durchgeführt. Die so identifizierten Fehlermuster können der Trainingsdatenbasis zugeführt werden und verbessern die simulative Datenbasis um messtechnisch erfasste Beobachtungen.

Schutz vor IT-Angriffen

Die fortschreitende Digitalisierung der Stromnetze und die damit einhergehende Installation und Einbindung zusätzlicher, intelligenter Sensortechnik ermöglicht die ganzheitliche Überwachung in unterschiedlichen Netz- und Systemebenen. Entsprechend anfällig sind derartige Systemarchitekturen für IT-Angriffe. Insbesondere automatisierte, KI-basierte Überwachungssysteme müssen gegen derartige Bedrohungen und Angriffsszenarien geschützt werden. In aktuell laufenden Forschungsprojekten werden deshalb Algorithmen entwickelt, um wichtige Kommunikationsstrecken abzusichern, beispielsweise durch Verschlüsselungstechnologien oder Intrusion-Detection-Systeme.

André Kummerow

Kummerow, André
André Kummerow, wissenschaftlicher Mitarbeiter und stellvertretender Leiter der Gruppe Elektrische Energiesysteme am Fraunhofer IOSB-AST, ist seit November 2015 schwerpunktmäßig in den Bereichen Simulation und Betriebsführung dezentraler Energieerzeuger und -speicher sowie Prognose und Klassifikation von Energiezeitreihen auf Basis künstlicher Intelligenz tätig.

https://www.iosb.fraunhofer.de
Dieser Beitrag ist in der Ausgabe Mai/Juni 2020 von stadt+werk erschienen. Hier können Sie ein Exemplar bestellen oder die Zeitschrift abonnieren. (Deep Link)

Stichwörter: Smart Grid, Netze, Fraunhofer IOSB-AST, Künstliche Intelligenz (KI)

Bildquelle v.o.n.u.: fotomek/stock.adobe.com, Fraunhofer IOSB-AST

Druckversion    PDF     Link mailen


Weitere Meldungen und Beiträge aus dem Bereich Netze | Smart Grid

TransnetBW: Modernisierung des Umspannwerks
[15.4.2024] Am Umspannwerk Oberjettingen im Landkreis Böblingen sind jetzt mit einem öffentlichen Spatenstich Baumaßnahmen eingeleitet worden. Das modernisierte Umspannwerk soll den Endpunkt für die geplante Gleichstrom-Höchstspannungsleitung SuedWestLink bilden. mehr...
Spatenstich für die Modernisierungsmaßnahmen des Umspannwerks Oberjettingen.
BNetzA: Netzentwicklungsplan genehmigt
[4.3.2024] Die Bundesnetzagentur hat den neuen Netzentwicklungsplan der deutschen Übertragungsnetzbetreiber genehmigt. Darin wird erstmals ein klimaneutrales Stromübertragungsnetz skizziert. mehr...
Im Netzentwicklungsplan der deutschen Übertragungsnetzbetreiber wird erstmals ein klimaneutrales Stromübertragungsnetz skizziert.
BDEW: Mehr Tempo beim Netzanschluss
[29.2.2024] Das Bundeswirtschaftsministerium hat ein Eckpunktepapier zur Beschleunigung des Anschlusses von Erneuerbare-Energien-Anlagen an das Stromnetz vorgelegt. Der BDEW macht nun in einem Positionspapier konkrete Vorschläge. mehr...
TransnetBW: Bauauftrag für Hitachi Energy
[27.2.2024] Ab dem Jahr 2025 entstehen an den Umspannwerken in Wendlingen und Oberjettingen STATCOM-GFM-Anlagen. Ihre Aufgabe ist es, die Netzstabilität aufrechtzuerhalten und wetterbedingte Schwankungen zu kompensieren. mehr...
Vertragsunterzeichnung zwischen TransnetBW und Hitachi Energy.
O2 Telefónica: Münchner Vernetzung
[20.2.2024] O2 Telefónica unterstützt die Stadtwerke München bei der Digitalisierung der bayerischen Landeshauptstadt. Dabei geht es unter anderem um den Einsatz von IoT-Anwendungen für die Smart City. mehr...
Mobilfunkantenne in München: O2 Telefónica ist Partner der Stadtwerke München.

Suchen...

 Anzeige

 Anzeige



Aboverwaltung


Abbonement kuendigen

Abbonement kuendigen
Ausgewählte Anbieter aus dem Bereich Netze | Smart Grid:
Trianel GmbH
52070 Aachen
Trianel GmbH
SMIGHT GmbH
76185 Karlsruhe
SMIGHT GmbH

Aktuelle Meldungen